2. Generalized models of the mathematical physics
We have problems of the justification of the classical mathematical models. We will try to change the classical model by the generalized one. We will determine generalized solution of the problem. We will find physical sense of the generalized solution and the approximation method for its solving. Then we discuss the problem of the justification for the generalized model.
2.1. Generalized solution of the problem
Consider the boundary problem
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                                             u(0) = 0, u(L) = 0.                                   (2.2)

It is the classical model of the stationary heat transfer process. Determine the Sobolev space 
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 of all square Lebesgue integrable functions on the interval (0,L) with its first derivatives and zero values on the boundary. We will use its short denotation 
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. Note that the generalized derivative but not classical one is used here.
Definition 2.1. The generalized solution of the problem (2.1), (2.2) is an element of the space 
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         (2.3)            

is true.
Theorem 2.1. The classical solution of the problem (2.1), (2.2) is its generalized solution.
Proof. Let the function u be a classical solution of the boundary problem (2.1), (2.2). So it belongs to our Sobolev space. Multiply the equality (2.1) by an arbitrary element ( of Sobolev space. Integrating in x, we obtain 
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             (2.4)

After integration by parts with using the equality of the function ( to zero on the boundary of the given interval we have the equality (2.3).                 (
Theorem 2.2. The twice differentiable generalized solution of the problem (2.1), (2.2) is its classical solution.
Proof. Let the function u be a twice differentiable generalized solution of the boundary problem (2.1), (2.2). Integrate the equality (2.3) by part. Then we obtain the equality (2.4). It can be transform to the equality
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So the equality (2.1) is true at the arbitrary point x because of the arbitrariness of the function (. We have also the boundary conditions (2.2) by the definition of the Sobolev space.                                                                 (
Of course the function of Sobolev space can be non-twice differentiable. So the generalized solution of the problem is not obligatory its classic solution. However twice differentiable generalized solution is the classic solution of the problem. Indeed integrating by part the term of the left side of the equality (2.5) with using boundary condition of the function (, we obtain (2.4). This result is true for all ( of Sobolev space. Using the continuity of the second derivative of u, we get the equality (2.1) for all point of the given domain. The boundary conditions (2.2) are true by definition of Sobolev space. So the smooth enough generalized solution of the problem is its classic one. However a non-smooth generalized solution is not the classic solution. The relation between classic and extended solutions is imaged on the Figure 2.1.
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Figure 2.1. Relation between classical and extended solutions.

The extended solution has weaker functional properties than classic one. So the proof of the solvability of the problem and convergence of the numerical method for the generalized method are easier than the classic one. Besides it uses weaker suppositions. These results and the equality between the smooth generalized solution and classic one are explain the popularity of the generalized method to the mathematical physics. 

We can hope the possibility of the justification of the mathematical models determination by the generalized method. However we determine the generalized solution from the boundary problem (2.1), (2.2). Therefore the generalized solution seems as the corollary of the classic one. The generalized method could solve the problem of the justification of the mathematical model if the integral equality can be obtained from the physical low directly without using the boundary problem (2.1), (2.2) only.
2.2. Determination of the generalized model
We will try to proof that the equality (2.3) is a direct corollary of the balance relations (1.1), (1.2)
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that are the basis of the classic model.

Multiply the equality (2.5) by smooth enough function  with zero values on the boundary, and integrate the result. Devising by the interval length h, we get  
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Pass to the limit with using of the mean theorem; we obtain the integral equality (2.3). This result is true for the functions и and belong to Sobolev space.

Hence the equality (2.3) can be obtained as a corollary of the balance relations (2.5), (2.6) with direct physical sense. So we can interpreted it as the mathematical model of the considered physical phenomenon.
Definition 2.2. The boundary problem (2.1), (2.2) is called the classic model of the considered process, and the integral equality (2.3) is called its generalized model XE "модель:обобщенная" . 
We can doubt of the interpretation of the equality (2.3) as a model because of the arbitrariness of the function . However this is not the serious problem. The classic model describes the state of the considered system directly. But it is possible another case with predicting the response of the system to the exterior influence. So we can interpret the function as an exterior influence (see Figure 2.2). Moreover the interior structure of the system can be often unknown. We can observe the properties of the system only by its response to the exterior influence. It is conformed to the well-known “blackbox” notion. 

[image: image12.wmf] 

signal

 

response

 

 

l

 

 

F

(

u

,

l

)

 

  

state

 

  

u

 

   

state

 

  

u

 

system

 

 

classic model

 

 

generalized model

 


Figure 2.2. Classic and generalized models.

Remember problems of the microcosm described by the quantum mechanics lows. Each experiment is a result of the interaction between the considered system and the instrumentation. We do not have any possibility to measure something without noise. It can be characterized be Heisenberg uncertainty relation. The microcosm nature is not conforming to the classical model with direct description of the phenomenon. The generalized model is based on the analysis of the response of the system to the exterior influence. So it is conformed to the lows the quantum mechanics.
We determined the function u of the Sobolev space, which satisfies the equality (2.3) as the generalized solution of the boundary problem (2.1), (2.2). However if it is not smooth enough, the equation (2.1) does not have any natural sense. It can be interpreted as a short form of the problem (2.3) only. It is not the corollary of the physical low in this case because we cannot any possibility to pass to the limit at the balance relations. But if the solution of the problem (2.3) is smooth enough we can deduce the boundary problem (2.1), (2.2) from the equality (2.3). So the classic model is secondary with respect to the generalized one. Therefore we will use the following definition (see Figure 2.3). 
Definition 2.3. The function of Sobolev space is called the generalized state of the considered system, if it satisfies the equality (2.3). The twice differential function is called the classical state of this system, if it satisfies the boundary problem (2.1), (2.2). 
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Figure 2.3. Relation between classic and generalized models.
Hence the generalized solution of the problem or rather generalized state of the system has a direct physical sense. However we do not know if it is constructive. We would like to obtain the method of solving the problem (2.3) without it transformation to the boundary problem (2.1), (2.2). This formula contains the operation of the differentiation and the integration. The integration of the integrable function is the natural operation. However it is not clear an approximation of the derivatives of the nonsmooth integrable functions. So we will precise the sense of the derivatives at the formula (2.3).

2.3. Generalized derivatives  

We know that the standard methods of the approximate differentiation use the differentiability of functions. However the equality (2.3) involves the generalized derivatives but not classic ones. So we would like to approximate the generalized derivatives for practical finding the generalized of the system.

Remind the definition of the generalized derivative.
Definition 2.4. The object dи/dх is called the generalized derivative of the function on the interval (a,b), if it satisfies the equality
                      
[image: image14.wmf]()()

()()

bb

aa

duxdx

xdxuxdx

dxdx

l

l

=-

òò

                     (2.7)

for all continuously differentiable function ( with zero values at the points a and b.

Consider an example. Determine the function
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on an interval  (a,b), where a<0<b. Using equality (2.7), we get 
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So the generalized derivative of the differentiable function u is the continuous function
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Note, that the generalized derivative is equal to the classic one for this case.

Find the generalized derivative of the non-smooth function v. We have
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where the function w is equal to –1 for the negative values of argument, and to 1 for its positive values. So the generalized derivative of the non-differential function v is the discontinuous function w. 
Note the generalized derivative characterizes the velocity of the function change as the classic one (see Figure 2.4). For all negative values of the argument the function v decreases with the constant velocity; so its generalized derivative w is equal to the negative constant. For all positive values of the argument the function v increases with the constant velocity; so its generalized derivative w is equal to the positive constant. Besides the point of non-smoothness of the function v is the point of the discontinuity of the function w. 
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Figure 2.4. The generalized derivative characterized the velocity of the function change.

In really then formula (2.7) is applicable for the discontinuous functions too. So we can try to find the generalized derivative of the function w. We get
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Hence the generalized derivative of the function w is an object such that the integral of its product by the arbitrary smooth function is the doubled value at zero. After division by 2 this object is called (-function. This is not function even. This is an element of the class of the distributions. Thus the generalized derivative of the discontinuous function exists. However this is not function. This is a distribution (see Figure 2.5). Note that the standard sense of the classical derivative is saved in this case too. Indeed the function w has the jump at zero. So its velocity of the change is unbounded on the neighbourhood of this point. 
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Figure. 2.5. (-function is a limit of a sequence of the regular functions. 

The properties of the function u and its generalized derivatives are given in the Table 2.1.
Table 2.1. Properties of the function and its generalized derivatives 
	object
	definition
	smoothness
	monotony

	u
	x | x | /2
	differentiability
	increase

	u'
	| x |
	non-differentiability
at zero
	decrease, if  x<0,
increase, if  x>0

	u''
	-1, x<0; 1, x>0
	jump at zero
	piecewise constant

	u'''
	2((0)
	distribution
	zero for all points except zero  


2.4. Approximation of the generalized model
We approximated the equation (2.1) with using the standard formulas of the approximate differentiation. However it used the smoothness of the functions. We would like to obtain the practical algorithm of finding the generalized state of the system. So we need to approximate the generalized derivatives.

Try to approximate the equality (2.7). Devise the interval (a,b) by М equal parts with the step h = (b – a)/М. Approximate the integrals by the right rectangle formula. The derivative of the function ( can be approximated be the back-difference formula. It is substantiated because the values under the integrals are integrable, and function ( is continuously differentiable. Using the boundary conditions, we have
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where  ui = u(xi) , (i = ((xi) , xi = а + ih . This equality can be transformed to
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The function ( is arbitrary. Choose it equal to zero for all points except xi. So we get
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This is the formula of the forward difference.

If we use the left rectangle formula for the approximation of the integral and the forward difference formula for the approximation of the derivative of the function (, we will determine the back difference formula for the generalized derivative of the function u. So the classical formulas of the approximate differentiation are applicable for the generalized derivatives too. Then we can approximate the generalized model (2.3).
Approximate the integrals and derivatives of the equality (2.3), we obtain
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Using the formula
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and the given boundary conditions, we get 
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Choose (i  equal to zero for all value of the indexes except one of it, we have 
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This is the standard difference equation for our problem. It is equal to the standard equality (1.5). 

So we have the same results for solving the classic model and generalized one. Thus the generalized state is constructive. It can be found directly without using the classic model. Note that the substantiation of the numerical method is easier here because we need to prove the convergence only in the sense of Sobolev space. But the convergence on the algorithm for the classic case needs the convergence in the space of the twice differentiable functions. So the numerical analysis of the generalized model is easier than of the classic one.
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Figure 2.6. Advantage of the generalized and classic models.

Thus the generalized model is preferable than the classic one. We return now to the problem of the substantiation of the determination of the considered model. 
2.5. Validity of the generalized method
We have already known that the generalized model is the direct corollary of the physical lows. However the determination of the generalized model uses passing to the limit. It is right is the considered functions belongs to Sobolev space. But we do not know this information before the determination of the generalized model. So we have the same difficulty as the classical case. The generalized model uses the weaker supposition, because Sobolev space is larger than the space of the twice differentiable functions. However we can to substantiate the necessary supposition.
We have the difficulties of the convergence substantiation. Therefore we will analyze the properties of limits.  
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